Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(12): e0225838, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31851680

RESUMO

In this paper, a simple yet interpretable, probabilistic model is proposed for the prediction of reported case counts of infectious diseases. A spatio-temporal kernel is derived from training data to capture the typical interaction effects of reported infections across time and space, which provides insight into the dynamics of the spread of infectious diseases. Testing the model on a one-week-ahead prediction task for campylobacteriosis and rotavirus infections across Germany, as well as Lyme borreliosis across the federal state of Bavaria, shows that the proposed model performs on-par with the state-of-the-art hhh4 model. However, it provides a full posterior distribution over parameters in addition to model predictions, which aides in the assessment of the model. The employed Bayesian Monte Carlo regression framework is easily extensible and allows for incorporating prior domain knowledge, which makes it suitable for use on limited, yet complex datasets as often encountered in epidemiology.


Assuntos
Infecções por Campylobacter/epidemiologia , Doença de Lyme/epidemiologia , Método de Monte Carlo , Infecções por Rotavirus/epidemiologia , Teorema de Bayes , Alemanha , Humanos , Cadeias de Markov , Modelos Estatísticos
2.
Neural Comput ; 30(4): 945-986, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29342400

RESUMO

A neuronal population is a computational unit that receives a multivariate, time-varying input signal and creates a related multivariate output. These neural signals are modeled as stochastic processes that transmit information in real time, subject to stochastic noise. In a stationary environment, where the input signals can be characterized by constant statistical properties, the systematic relationship between its input and output processes determines the computation carried out by a population. When these statistical characteristics unexpectedly change, the population needs to adapt to its new environment if it is to maintain stable operation. Based on the general concept of homeostatic plasticity, we propose a simple compositional model of adaptive networks that achieve invariance with regard to undesired changes in the statistical properties of their input signals and maintain outputs with well-defined joint statistics. To achieve such invariance, the network model combines two functionally distinct types of plasticity. An abstract stochastic process neuron model implements a generalized form of intrinsic plasticity that adapts marginal statistics, relying only on mechanisms locally confined within each neuron and operating continuously in time, while a simple form of Hebbian synaptic plasticity operates on synaptic connections, thus shaping the interrelation between neurons as captured by a copula function. The combined effect of both mechanisms allows a neuron population to discover invariant representations of its inputs that remain stable under a wide range of transformations (e.g., shifting, scaling and (affine linear) mixing). The probabilistic model of homeostatic adaptation on a population level as presented here allows us to isolate and study the individual and the interaction dynamics of both mechanisms of plasticity and could guide the future search for computationally beneficial types of adaptation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...